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INTERACTION OF A DISLOCATION WITH A CRACK

A. Cemal Eringen .

Princeton University
Princeton, NJ 08544

ABSTRACT

A solution is given of the field equations of nonlocal

elasticity for a line crack interacting with a screw dislocation in

an elastic plane under anti-plane shear loading. Displacement and

stress fields are determined throughout the core region and beyond.

In the case when the dislocation is absent, the circumferential stress

is shown to vanish at the crack tip, increasing to a maximum along the

crack line afterwards decreasing to its classical value at large dis-

tances from the crack tip. This is in contradiction with the classical

elasticity solutions which predicts stress singularity at the crack

tip and it is in accordance with the physical condition that the crack

tip surface must be free of surface tractions. The presence of the

dislocation alters the stress distribution considerably when it is

close to the crack tip. The stress distributions, in the core region,

are displayed. A fracture criterion based on the maximum stress is

established and used to determine the theoretical strengths of pure

crystals that contain a line crack. Results are in good agreement with

those based on the atomic theories and experiments.
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ABSTRACT (cont)

to its classical value at large distances from the crack
tip. This is in contradiction with the classical elasticity
solutions which predicts stress singularity at the crack tip
and it is in accordance with the physical condition that the
crack tip surface must be free of surface tractions. The
presence of the dislocation alters the stress distribution
considerably when it is close to the crack tip. The stress
distributions, in the core region, are displayed. A frac-
ture criterion based on the maximum stress is established
and used to determine the theoretical strengths of pure
crystals that contain a line crack. Results are in good
agreement with those based on the atomic theories and ex-
periments.
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I. INTRODUCTION

It is well known that the classical elasticity solution of crack

problems fail in a core region around a sharp crack tip, since they pre-

dict stress singularity at the tip. The assessment of the core radius

and the stress field within the core is a problem usually discussed within

the context of atomic theories of lattices (cf. [1]). even at that its

treatment contains various assumptions regarding the interatomic arrange-

ments and force fields.

Engineering fracture mechanics, on the other hand, is based on the

Griffith's2 ideas which resort to other concepts (e.g. energy, J-integral,

fracture toughness). To be sure, there exist certain erzatz to account

for the effect of the core region on fracture process in phenomenological

ways. These are useful for engineering purposes, however, they are not

based on a fundamental theory nor are they capable predicting the state

of stress in the core region whcih is fundamental to the initiation of

fracture.

In several previous papers, we have shown that nonlocal elasticity

solutions of Griffith crack problems lead to finite stress at the crack

3-5 6tip .In fact, an exact solution obtained for the screw dislocation,

indicates that the stress vanishes at the tip of the crack, growing to a

maximum in the vicinity of the crack tip. The important implications of

this result in connection with the initiation of fracture is the motivation

for the present work.

The solution obtained here for the Mode III (anti-plane shear)

problem for a crack interacting with a screw dislocation indicates that the

circuiviferential stress field is vanishingly small (zero when the dislocation
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is absent) at the crack tip, when the screw is located far away from the

crack tip. When the dislcoation is near the crack tip, the stress field

is affected apprciably displaying several maxima near the crack tip. By

equating the maximum stress to the cohesive yield stress, we can determine

the stress intensity factor K or the theoretical yield stress, given

K . Calculated Kg values, on the basis of the present theory, are in

fair agreement with those determined experimentally. Theoretical strengths

are also estimated by means of the dislocation model. Results agree with

those predicted by atomic models.

The mathematical model of approach to the solution of this problem

is new and possesses potential applications in other areas.

2. BASIC EQUATIONS

In several previous papers, we developed a theory of nonlocal

elasticity, cf. [7, 8, 9]. For homogeneous and isotropic elastic solids,

linear theory is expressed by the set of equations

(2.1) tkL,k+ p(f£ - u) 0

(2.2) tkk(xt) " / (lx'-x!,t) oki(',t) dv(x')

V

(2.3) Ok(x',t) = err(x',t) 6 + 2 V ek (XIt)

I auk( 't) au;(x .t)
(2.4) e (x' . + " ]

k ia
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where tk P and u are respectively, the stress tensor, mass density,

body force density and the displacement vector. A and V are the Lam6 elastic

constants and o is the "attenuation function" which depends on the distance

!xxj and a parameter r which denotes the ratio of the internal charac-

teristic length a to the external characteristic length I , i.e.

(2.5) T = e0 a/ k1

where eO  is a constant appropriate to each material. Characteristic ]0i
lengths may be selected according to the range and sensitivity of the

physical phenomena to be investigated. For instance, for perfect crystals,

a may be taken as the lattice parameter and Z as the half crack length.

For granular materials, a may be considered to be the average granular

distance and for fiber composites, the fiber distance etc. The material

constant, e0 may be determined by one experiment.

Equations (2.1), (2.3) and (2.4) are those known from the theory of

classical elasticity, but Eq. (2.2) is new, replacing Hooke's law. Accord-

ing to Eq. (2.2), the stress at a point x depends on strains at all points

x' of the body. The attenuation function determines the degree of

influence with the distance. From the physical nature of solids, it is

clear that the influence of strains at xI , on the stress at x , decreases

with the distance iIx- . Thus, ct(!lx' ) must acquire its maximum at

xa x. Moreover, when a-o-O , a must become a Dirac delta measure so that

nonlocal theory shall revert to classical elasticity theory. By matching the

phonon dispersion curves with those resulting from nonlocal theory, we have

determined o for various cases (cf. [5], [8), [10)).
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By discretizing Eq. (2.2), it can be shown that equations of nonlocal

elasticity revert to those of atomic lattice dynamics. 11 Thus, it is clear

that nonlocal theory is a suitable model for the treatment of physical pheno-

mena with characteristic lengths in the range from the molecular or atomic

dimensions to macroscopic sizes.

For a two-dimensional perfect lattice, the dispersion curves are

matched in the entire Brillouin zone to within an error less than l

with the attenuation function
10

(2.6) cdjl,t) (2rR2 r2) K0( x" /r) X

where K0  is the modified Bessel's function. We note that Eq. (2.6) is

Green's function for the operator L=(I - 2 T 2 V2 ), i.e.

(2.7) ( - 2 2V2)c = 6(x'-xI)

In fact, it is possible to employ other linear operators to characterize the

nature of nonlocal attractions of material points in solids. This apparent

non-uniqueness of a may be considered to be a defect of the theory. On

the contrary, for imperfect and amorphous solids, this may provide a de-

sirable flexibility. Ultimately, however, a should be determined from

experimental and/or statistical mechanical considerations. For perfect

crystals, Eq. (2.6) leads to excellent agreements with the dispersion curves

based on atomic lattice theory.

Upon the application of the operator, L =-l -k 2 2 2 ) to Eq. (2.2),

we obtain
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(2.8) (1 -222 tk

Divergence of Eq. (2.8), upon using (2.1) and (2.3), leads to

(2.9) (X+i) Uk,U + Ij U,kk + (1 - 22 V 2 )(pfk - pui) = 0

For the static case and vanishing body forces, Eq. (2.9) is non other than

Navier's equation of classical elasticity. Note, however, that the stress

tensor is not a but tk and it requires that we solve Eq. (2.8) to

determine tkk.

For plane, harmonic, SH-waves, Eq. (2.9) gives the frequency

(2.10) W = (fi/p)2 k[l + e~k2a2 )"

where k is the amplitude of the wave vector. By equating w given by

Eq. (2.10) to that predicted by the Born-K~rmhn model of lattice dynamics,

at the end of the Brillouin zone (ka=7r), we find that

(2.11) e0 = (2 . 4)k/21T - 0.39.

The dispersion curve based on Eq. (2.10) and that of the Born-Kfrmfn model

are compared in Fig. 1. We see that the matching is very good. The maximum

error is less than 6A.
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The dispersion curves of the Born-Kirmin model is a good 
approximation

for some fcc and bcc metals (e.g. Al and cu). While the Brillouin

zone may vary in dfferent directions of slips in crystals, 
we believe that

Eq. (2.11) is a reasonable value for e0 when the material is considered

to be isotropic.

3. CLASSICAL STRESS FIELDS

A homogeneous, isotropic elastic solid of infinite extent contains

a crack located at - c < xI L c x2 = 0  - <x3 <- where xk are the

rectangular coordinates, Fig. 2. We suppose that there exists a disloca-

tion which lies parallel to the x3-axis and which intersects the plane x3 = 0

at the point S{x, =C , x2=" . The solid is subject to a constant anti-

plane shear at x2 =  . The classical elasticity solution of this problem

12was given by Louat . However, here we derive the solution of this problem

in the form better suited for our purpose, eliminating possible misprints,

difficulties in notations and in taking various limits.

Since the state of the body is the same at all planes, x3 =const.,

the problem is two-dimensional and we need to treat the plane problem in the

plane x3 = 0 with a line crack located at x2 = 0, 1x11 c.

The classical stress field at any point P(x1 ,x2 ) may be expressed

conveniently in the form
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(3.1) 023 -i 13 A [ f dt
z-t

-c

where = x1 -i x, and f(t) is the distribution function which is the

solution of the equation of equilibrium of the forces acting on the crack

surface:

(3.2) A J ) dt = Od(X) + 0 A= IA0/2

-c

Here, the integral denotes a Cauchy principal value, is the shear modul

X, is the displacement vector of a unit positive dislocation and °0 and c

are the stress fields at the crack surface due to the applied load and the

dislocation, respectively.

The solution of the integral equation (3.2) is well-known, Triconi13

*c

f' dt- ___2
(3.3) •f(x) 2A -x2 c -t c + od(t)] t-x+

2 2- rT-

Here, Q is a constant to be determined from the condition that

(3.4) f(x) dx = n

-c

where nk0 is the total dislocation content of the distribution f(x)

The stress ad(t) is given by

d-t)
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(3.5) od(t) 2_[(t- +r21T[(-) + n2 ]

Substituting this into Eq. (3.3), we can carry out integrations to

obtain

f(x) b 1 + b

(3.6)

where + = ir, * = i . Using this in Eq. (3.4), we will have

Q = n/- . Carrying f(x) into Eq. (3.1) after some tedious integrations,

we obtain

(3.7) c 2 3 - i13 = o( ) - A -

23 1(- AX1

z -c z-+ 1 l- ]+ (b n) -A

The forces acting on the dislocation at (Eq), due to the crack,

are given by

(3.8) F1  b 023, F2  b 013 (x1 =i, , x2 n)

For our own purpose later, we need the stress field when the dislocation is

located along the xl-axis and the surface of the crack is free of tractions.

To this end, we set -0 and add
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(3.9) o+ (Xl) = o0 +Ab

to the right-hand side of Eq. (3.7). Hence,

(3.10) 023 - i 013 0[o + A(k + n)

+ bA
0 z-E

gives the classical stress field at any point outside of the crack when

the body is loaded at x2=+ -  with a constant shear 0,3= ±00. When

the crack contains no dislocations, then we have n=0.

Two special cases are important:

(i) :, a' oC = . In this case, the classical stress field

is given by

(3.11) jib
2Tr

where we also set e=0 placing the dislocation to the origin of coordinates.

(ii) Nc !'isZocaions. In this case, A=0 and we have

0z0
(3,12) o °

z -c

Both of these results are well-known in the literature.
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4. NONLOCAL STRESS FIELDS

To determine the nonlocal stress fields, we must obtain the solution

of

(4.1) (I-T2k2V2 ) t : o

subject to some boundary conditions. Here

(4.2) t t2 3 - i t13 , 0 = 023 - i 013 + 0 + Od(Xl)

Since 12c=0, t=a is a particular solution of Eq. (4.1). The comple-

mentary solution of (4.1), vanishing at infinity and having proper symmetry

regulations with respect to (xl, +x 2 ) , is of the form

(4.3) tc = K\(r/i)(A eVe + B e i

where A , B and v are constants, K (p) is the modified Bessel's
V

function and (r,6) are the plane polar coordinates.

The boundary condition on the crack surface requires that t23
0 .

Taking the origin r=O of the coordinates at the right-hand crack tip

and writing r=r , e=e I , in (4.3) we see that to fulfill this condi-

tion, we must have v=1/2 , since all other solutions lead to displacement

singularities at rl 0.

Classical stress field a possesses singularity at the screw

dislocation x= x2 =0. The surface traction, trz on the edge

surface of the dislocation is required to vanish, according to the boundary
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condition, To fulfill this condition we take v=I and move the origin

of coordinates to x1 = , x2 = 0. This may be expressed by writing

r = rd, 6 Z 3 and

-e ie1
(4.4) rd e = r1 e -x0

Hence, the general solution of (4.1) appropriate to our problem is of the

form
(C1-I e + 1 2  e/

(4.5) t = (rT/2ri) erI/  i6l/2 + -i0/2

ie 3  -ie) .

+ Kl(rd/T)(C 3 e 3 + C4 e +

To determine C , we calculate stress components in polar coordinates

(ris,)

-iel

(4.6) te z- i trz = (t2 3 - i t,3) e .

We imagine the crack tip as a limit of a small circular arc with radius

=rl E approaching zero. For small E , we have approximately

z c +z = - c + z2  = + z 3  = c + x0 + z 3 ,
(4.7) 8

e l

Using these in Eq. (3.10), we will have
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ei1/2 jib ir (l+bno0) - + c) O

(4.8) a (c/2r,) e [) 2cc(

Consequently, Eq. (4.5) gives

(ie1/2[0) e,/2 [oO+ b (1 + 10
(4.9) tz- i t (c/2r) e x+lez rz 2r

+ (1rk/2r,)ke " (C1  e + C2  e )

rI e r -ieI
" Kl(IXO/TJ (C3T " C3 + C4 O0e - C4 ) e

(3X0 3 04

The boundary condition on trz requires that

(4.10) lim trz = 0
r1P 0

This condition will be fulfilled approximately* for x0/Tz >> 1 if C2  0

and

nXo0

(4.11) C1  = " (c/T),) [0 + _ ) _ 2b ( + )kj

Next, we calculate the stress field at the location rd 
= 0 of the screw

dislocation. As rd- 0  we have r i = x0  and

In fact, this condition is satisfied exactly along the crack line
tl :+7t.
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.~ e-XIT i 8

(4.12) tze - i tzr z (nTL/2xo)k e C1 + Kl(rd/ T)(C3 e +C4 e
'  )

nX0

[x0(X0+21o(C+xo)+ 0 -b)
eie 3

+ "b[xo(xo + 2c] e

Again tzr must vanish as rd .0. This implies that C4 -0 and

(4.13) C3  = - b/2Tr .

The general solution is now complete.

(4.14) t = (rik/2rl) e-rl/I iel/2 ei3
= e + Kl(rd/Tt) C3 e +

where Cl and C3  are given by (4.11) and (4.13). In polar coordinates,

we have

(4.15) tez -i trz (Twr/2rI) e r C, eiel/ 2 + Kl(rd/TZ) C3 ei(e3"l)

+ (rlr 2) 'k ei(021612{ [C0 r e +2(I + )

ie.

+ -b (r, e- - x0 ) l [x0 (x0 + 2c)}

Special cases mentioned in Section 3 can be obtained in a similar fashion.
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() ~NO Crack

ub I

(4.16) t ez- t r . - [1-p Kl(P) ,

where we have taken the origin of the polar coordinates at the dislocation,

so that p = rd/Tt.

(ii) No Dislocation

+i(- 2 ) -r /Tk -iell2
(4.17) tz-i t rz O0 (c/2r,) [(2r2/cr2) e e e

5. FRACTURE

Here, we discuss the onset of fracture and determine the

theoretical stresses for the two special cases.

() No Crack

According to Eq. (4.16), we have trzaO and

(5.1)To(p } , 2T toz =PIl -pKI(P)]
Ij b

The maximum of T occurs at p-1.1 and is given by

(5.2) Temax 3 0.3993; Pc 1.1
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It is natural to assume that when tez max becomes equal to the theoretical

stress t, the crystal will rupture. Thus,

(5.3) ty/P = 0.3993 -eb

y 27re 0a

If we write h meoa/.3993, this agrees with the estimate of Frenkel based

on an atomic model (cf. Kelly 14 , p. 12). For aluminum (fcc), b=a/v7 and

for iron (bcc), b= V3/2, so that Eq. (5.3) gives

t /w = 0.12 {Al: [111] <10>}
y

t y/ = 0.14 {Fe: [10) <lll>}

These are close to the theoretical results ty/p= 0.11 based on atomic

models.

It is interesting to note that t =0 at the center of dislocation

and it rises to a maximum at p= .1 , thereafter decreasing to zero with

p . Significant consequences of the present predictions as contrasted to

the classical results are:

(a) The stress at the center of the core is not infinite, but zero.

(b) Fracture begins at p = Pc not at the center of the core.

(c) There is a low stress region, 0 <p <pc within the core.

(ii) No Dislocations

From (4.17), it is clear that tez acquires its maximum along the crack

line e- I e 2 =0, near the crack tip. The circumferential stress along
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the crack liner 1 >.0 is expressed by

(5.4) =z 0 (2yp')k [(I + yp)(l + Yor - e-P]

where

(5.5) p = r /e a , - eoa/c

teVanishes at the crack tip p -0 and has a maximum at p=pCwhich is

the root of

(5.6) e-P (1 + 2p) (1 +

Since -Y<<(1 < 10-6), we see that the root of (5.6) is independent of

c and is given by

(5.7) PC= 1.2565

and the maximum stress is given by

(5.8) t ze max o 0(eoa/c)- (v2p- + 1J.)-

a-C

We also observe that as P- (5.4) gives t 8 oe'0 - as it should.

In the classical tradition, if we write K1 I VAi-E 00 then (5.4)

may be expressed as



18

(5.9) T (p) = /tzfO 0 = (r eoa) tze/KiiI

= (2p)" [I +yp)(l + -e-)

This is plotted against p , in Fig. 3 in the vicinity of the crack tip.

The classical (local) stress is also indicated on this figure by dashed

lines. From this figure, it is clear that the classical stress field

deviates considerably from the nonlocal stress field in the region

0 < p< 5. In fact, it diverges at the crack tip.

A perfect crystal which contains a crack, but no dislocation, will

not rupture before the maximum stress reaches the value of the cohesive

stress (theoretical stress) that holds the atomic bonds of the lattice.

Thus, the entire crystal is in the elastic state of equilibrium when

(5.10) tzemax < ty o

The failure begins when tz~max = ty, i.e., when

(5.11) Kc/ty = (Tr eoa) (=p-- + 1 3.9278 e-oa

c

where Kc = V'EC 0 c is the critical fracture toughness.

Using Eq. (5.11) and e0 - 0.39, we calculate a few Kg-values which

are listed in Table 1 (last column) along with classical KcSs based on
Vp

Kc = 41ys)2, where y is the surface energy. Experimental observations
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15,16
of Ohr and Chang are also listed in this Table. Classical estimates

are expected to be inaccurate considering the fact that even with the best

present-day techniques available, they could not be measured to an accuracy

better than a factor of two. Moreover, classical formula assumes no de-

fects (i.e., no crack and dislocation), therefore it is expected to give

higher K -values. On the other hand, experimental measurements of Ohrc

and Chang required the measurement of the length of the plastic zone among

other constants. This already implies the existence of dislocations so

that we expect some deviation from the perfect crystal containing no dis-

location but a single crack. In Section 6, we examine the general case

when the solid contains a crack and a dislocation.

6. DISLOCATION AND CRACK

Along the crack line xI > c, x2 = 0

Eq. (4.15) gives trz = 0 and with n = 0

(6.1) tez = tc + tdc

where

(6.2) c 0 = (2o) [1 + yr)(l + _L) . e-l-,

(6.3) td v /o -T 2  ( 2 4[L )" -  2 0 ))e

dc 2 ~ (2c- 2 ) 2

0I(-0 0 1) + (1 )YO 1-l

sgn(o-; )(2p/ Y)K - + (1+ -
); o)2("-
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in which

(6.4) ° = Xo/eoa, ji

when the dislocation is absent we have t = 0 so that tdc  is the

shear stress arising from the interaction of the dislocation with the

crack. At the crack tip P = 0 and we have

/ 0 Kl(0

(6.5) trz / o Y K

This shows that for positive dislocation ( b>O ) the shear stress is

positive and therefore the crack tip will tend to close up for b>O.

For o <0 the opposite will occur. However, the stress given by (6.5)

due to the dislocation is very small for large X0 and it becomes large

when the dislocation is very close to the crack tip. The stress field

TI(.) _-- T(.) so that Fig. 3 represents T1 () . Fig. 4 displays

graphs of T2 (.) for several values of io 
= 3.1, 41, 6.1 and 10.1,

keeping = 10-8 fixed. These graphs show that T2 possesses a minimum

and two maxima. The crack tip is not stress-free. The maximum

of T2 occur close to the dislocation, For example, in the case

0 3.1, the maximum is at ;c = 4.4 and in the case x°  101 it is0I

at xc = 112.

To obtain an idea on the combined effect I have selected

= l0 4  and plotted the ratio of the combined stress to c (tez /:o )

in Fig. 5 for various x0 . From these graphs it is clear that when

L!
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the dislocation is located close to the maximum of T the combined

effect is large. For example, while T max = 0.451 for the case of

crack alone, for the combined effect we have Tmax = 0.63 so that

the ratio of the two K -values is given by
g

(6.6) Kgtot / Kg1  0.71

This implies that a dislocation located at a distance approximately one

or two lattice parameters away from the crack tip reduces the fracture

toughness by about 30%. Hence the theoretical values of K listedg

in Table 1 will be reduced about 30% bringing the numbers on the last

column closer to those listed in the adjacent column marked experiments

These results however must still be considered only as indications for

the trend. A more realistic physical picture requires the presence of

large numbers of dislocations distributed over a few microns or so

distance, away from the crack tip. Consequently, to obtain a close

approximation to experimental observations of Chang and Ohr we need to

consider a distribution of dislocation in a region near the crack tip.

Such a consideration will require a separate study of dislocation pile up

which is left to a future study.
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